THE CLASSIFICATION OF UNISERIAL sl(2)n V (m)-MODULES AND A NEW INTERPRETATION OF THE RACAH-WIGNER 6j-SYMBOL
نویسندگان
چکیده
All Lie algebras and representations will be assumed to be finite dimensional over the complex numbers. Let V (m) be the irreducible sl(2)module with highest weight m ≥ 1 and consider the perfect Lie algebra g = sl(2) n V (m). Recall that a g-module is uniserial when its submodules form a chain. In this paper we classify all uniserial g-modules. The main family of uniserial g-modules is actually constructed in greater generality for the perfect Lie algebra g = sn V (μ), where s is a semisimple Lie algebra and V (μ) is the irreducible s-module with highest weight μ ̸= 0. The fact that the members of this family are, but for a few exceptions of lengths 2, 3 and 4, the only uniserial sl(2)nV (m)-modules depends in an essential manner on the determination of certain non-trivial zeros of Racah-Wigner 6j-symbol.
منابع مشابه
On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension
In this article, we first show that non-Noetherian Artinian uniserial modules over commutative rings, duo rings, finite $R$-algebras and right Noetherian rings are $1$-atomic exactly like $Bbb Z_{p^{infty}}$. Consequently, we show that if $R$ is a right duo (or, a right Noetherian) ring, then the Noetherian dimension of an Artinian module with homogeneous uniserial dim...
متن کاملAlmost uniserial modules
An R-module M is called Almost uniserial module, if any two non-isomorphic submodules of M are linearly ordered by inclusion. In this paper, we investigate some properties of Almost uniserial modules. We show that every finitely generated Almost uniserial module over a Noetherian ring, is torsion or torsionfree. Also the construction of a torsion Almost uniserial modules whose first nonzero Fit...
متن کاملSU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices
Recently Pluhar and Weidenmüller [Ann. Phys. (N.Y.) 297, 344 (2002)] showed that the eigenvectors of the matrix of second moments of embedded Gaussian unitary ensemble of random matrices generated by k-body interactions (EGUE(k)) for m fermions in N single particle states are SU(N) Wigner coefficients and derived also an expression for the eigenvalues. Going beyond this work, we will show that ...
متن کاملUniserial modules of generalized power series
Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کامل